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ABSTRACT

We have developed a modern code to solve the magneto-hydrodynamic

(MHD) or hydrodynamic (HD) equations. The code consists of several ap-

proaches for solving the MHD (or HD) by high-resolution schemes with finite-

volume and finite difference methods. A framework that implements adaptive

mesh refinement (AMR) with nested block-structure is developed. Cylindrical

and spherical geometries are considered as orthogonal curvilinear grid as well as

the Cartesian grid. We also enhance the AMR capabilities by the preserving the

conservative quantities and preserving the divergence free constraint for vector-

field. The code is fully parallelized with message passing interface (MPI) and a

dynamic load balancing scheme is incorporated to improve the parallel efficiency.

Our code is designed in a way that existing codes for a single grid can be easily

incorporated.

1. Introduction

Numerical simulation for astrophysics phenomena becomes more and more popular and

important in the last decades. Many astrophysics problems can be formulated as hydro-

dynamics (HD) or magneto-hydrodynamics (MHD) system of equations. Therefore, many

numerical simulation codes are based on correctly solving these equations.

1Los Alamos Report LA-UR-03-8925
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There are several codes available: ZEUS (Stone & Norman 1992) from NCSA, FLASH

(Fryxell et al. 2000) from flash center of the University of Chicago, BATSRUS (Powell et al.

1999)from university of Michigan, and many others.

We do not try to “re-invent the wheel” here but rather to develop a versatile code that

can be used easily, efficiently by application scientists. We admitted our effort might not be

as good as those available codes, which still keep on updating and improving. However, we

do have some new features that may not be available in other codes.

For testing, comparison and verification, we included several basic solvers in our code.

The “basic solver” means a complete solver for a nonadaptive single rectangular grid. For a

time-dependent PDE problem, a complete basic solver has several components: grid genera-

tion, initial conditions, boundary conditions, spatial discretization and time integration. For

a fully-discretized solver, the spatial discretization and time integration is often mixed and

can be treated as a black-box that outputs the solution at next time level given the input

values at the current time level. The Lax-Wendroff type of scheme belongs to such kind

of solver. Currently, we have implemented HLLE, HLLC, and Roe’s approximate Riemann

solvers and Colella’s multi-dimensional scheme for second-order method, PPM (available

only for HD) for for third-order, and WENO for fifth-order method. Our framework has a

capacity that other solvers can be incorporated easily without much recoding.

A real astrophysics problem contains multiple time and length scales that must be

resolved simultaneously. That’s why we adopt the adaptive mesh refinement approach in

our implementation. Our adaptive mesh refinement framework basically inherits all of the

features of Berger and Colella’s method (Berger & Colella 1989). We also enhanced Berger’s

AMR by an improved clustering algorithm (Li & Hyman 1998b), by allowing staggered grid

variables for vector-field components, by adding the cylindrical and spherical geometry. We

implemented our novel approach (Li & Li 2003) for maintaining divergence free condition

for AMR on any curvilinear grid. Moreover, Our AMR framework did not start from scratch.

It is based on a small version developed by our first author in his Ph.D. study (Li 1998).

As computers evolves, it became evident that the most powerful computers would be

massively parallel computers. The AMR’s block data structure has a nature to be paral-

lelized easily. Each block (or patch) can be assigned to a processor independently. However,

it became increasing apparent that applications that used structured AMR techniques could

not be efficiently parallelized due to hierarchical data structure that requires more com-

munication between grids on different levels. As a result, various C++class library-based
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approach emerged which purported to help in the parallelization of AMR applications. The

most prominent examples include the CHOMBO (Colella et al. 2003) and DAGH (Mitra et

al. 1997) library packages. The recursive feature of the time integration for a hierarchical grid

also requires the integration for different levels must be done sequentially. In our framework,

we proposed a locked time step method for a class of second order numerical schemes that

allows the grids on different refinment level can be integrated independently during a time

step. The computation and communication are interlaced to achieve full parallelization.

The outline of our report is as follows. In section 2, we describe the MHD equations for

general orthogonal curvilinear grid. In section 3 we describe several basic solver for a single

nonadaptive grid. In section 4, we describe our AMR framework. In section 5 we describe

our strategy on parallelizing the AMR hierarchical data structure. In section 6 we describe

some implementation details on spatial discretization and AMR operations for cylindrical

and spherical grids. Several benchmark problems are presented in section 7 to demonstrate

and test the efficiency and accuracy of our code.

2. MHD Equations for Orthogonal Coordinates

The equations of ideal MHD system can be formulated as

ρt +∇ · (ρu) = 0, (1)

(ρu)t +∇ ·
[

ρuuT + (p)I −BBT
]

= 0, (2)

et +∇ · [(e+ p)u−B(u ·B)] = 0, (3)

Bt −∇ · (uBT −BuT ) = 0, (4)

where ρ is density, u is the velocity, B is the magnetic field, e is the total energy per unit

volume, and p is the total pressure, defined as

p = pgas +
1

2
B ·B,

where pgas is the gas pressure that satisfies the equation of state,

pgas = (γ − 1)

(

e− 1

2
ρu · u− 1

2
B ·B

)

.

One external constraint for magnetic field is

∇ ·B = 0,
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which becomes Bx = constant in one dimension.

When the magnetic field components B = 0, the ideal MHD equations reduce to the

Euler equations for hydrodynamics. For briefness, we discribe only the MHD equations and

their eigen-system in the following. The Euler equations and their corresponding eigen-

system can be derived similarly by assigning B = 0 in our formulation.

2.1. MHD equations for local coordinate system

In this work, we are primarily interested in three coordinate systems: Cartesian coordi-

nates for which

(x1, x2, x3) = (x, y, z), (h1, h2, h3) = (1, 1, 1),

cylindrical coordinates for which

(x1, x2, x3) = (r, z, φ), (h1, h2, h3) = (1, 1, r),

and spherical polar coordinates for which

(x1, x2, x3) = (r, θ, φ), (h1, h2, h3) = (1, r, r sin θ),

where hi are the metric scale factors. If not stated otherwise, x3 is always the ignorable

coordinates for a reduced 2-D problem,

The conservative form of the MHD equations are a slight different for different geome-

tries, because the divergence operator ∇·, gradient operator ∇, and curl operation ∇× have

different forms in different coordinates. Basically for the gradient of a scalar function, we

have

∇f =

(

1

h1

∂f

∂x1
,
1

h2

∂f

∂x2
,
1

h3

∂f

∂x3

)

;

for the divergence of a vector A = (a1, a2, a3), we have

∇ · A =
1

h1h2h3

(

∂

∂x1
(h2h3a1) +

∂

∂x2
(h1h3a2) +

∂

∂x3
(h1h2a3)

)

;

for the curl of the vector A, we have

∇× A =

{

1

h2h3

(

∂

∂x2
(h3a3)−

∂

∂x3
(h2a2)

)

,

1

h1h3

(

∂

∂x3
(h1a1)−

∂

∂x1
(h3a3)

)

,

1

h1h2

(

∂

∂x1
(h2a2)−

∂

∂x2
(h1a1)

)}

.
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For the gradient of a vector A = (a1, a2, a3), we have

∇A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






,

where aij is

aij =

{

1
h i

∂aj

∂xi
− ai

hihj

∂hi

∂xj
, if i 6= j

1
h i

∂ai

∂xi
+ al

hihl

∂hi

∂xl
+ ak

hihk

∂hi

∂xk
, if i = j, (l, k) 6= i

Insert these equations into MHD equations and regroup them, we can obtain the MHD

equations in conservative form:

∂q

∂t
+

1

h1h2h3

(

∂

∂x1
(h2h3F) +

∂

∂x2
(h1h3G) +

∂

∂x3
(h1h2H)

)

= S, (5)

where

q = (ρ, ρv1, ρv2, ρv3, B1, B2, B3, E)t,

and the flux functions are

F =

































ρv1

ρv21 −B2
1 + p∗

ρv1v2 −B1B2

ρv1v3 −B1B3

0

Ω3

−Ω2
(E + p∗)v1 −B1(B · v)

































, G =

































ρv2

ρv2v1 −B2B1

ρv22 −B2
2 + p∗

ρv2v3 −B2B3

−Ω3
0

Ω1

(E + p∗)v2 −B2(B · v)

































,

H =

































ρv3

ρv3v1 −B3B1

ρv3v2 −B3B2

ρv23 −B2
3 + p∗

Ω2

−Ω1
0

(E + p∗)v3 −B3(B · v)

































,
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and the source terms are

S =

































0
B1B2−ρv1v2

h1h2

∂h1

∂x2
+ B1B3−ρv1v3

h1h3

∂h1

∂x3
+

ρv2
2
−B2

2

h1h2

∂h2

∂x1
+

ρv2
3
−B2

3

h1h3

∂h3

∂x1
+ p∗

h1h2h3

∂(h2h3)
∂x1

B2B1−ρv2v1
h1h2

∂h2

∂x1
+ B2B3−ρv2v3

h2h3

∂h2

∂x3
+

ρv2
1
−B2

1

h1h2

∂h1

∂x2
+

ρv2
3
−B2

3

h2h3

∂h3

∂x2
+ p∗

h1h2h3

∂(h1h3)
∂x2

B3B2−ρv3v2
h3h2

∂h3

∂x2
+ B1B3−ρv1v3

h1h3

∂h3

∂x1
+

ρv2
1
−B2

1

h1h3

∂h1

∂x3
+

ρv2
2
−B2

2

h2h3

∂h2

∂x3
+ p∗

h1h2h3

∂(h1h2)
∂x3

Ω2

h1h3

∂h1

∂x3
− Ω3

h1h2

∂h1

∂x2

Ω3

h1h2

∂h2

∂x1
− Ω1

h3h2

∂h2

∂x3

Ω1

h2h3

∂h3

∂x2
− Ω2

h1h3

∂h3

∂x1

0

































where

p∗ = p+
1

2
B ·B

is the total pressure,

Ω1 = v2B3 − v3B2, Ω2 = v3B1 − v1B3, Ω3 = v1B2 − v2B1

are the electromotive force (EMF, defined via Ω = v×B), and

E =
1

2
ρv · v+

p

γ − 1
+

1

2
B ·B

is the total energy. Note that for cylindrical and spherical geometry, all hi are known and

the above equations can be much reduced.

The 3-D MHD equations can be reduced to 2-D or even 1-D problems if symmetry of

the variables is used. For examples, for cylindrical coordinates, h1 = h2 = 1 and h3 = r, we

can reduce it to (r, φ) (or (r, z)) problem if all of the variables are of functions of (r, φ) (or

(r, z)). It can be further reduced to 1-D problem of r if all of the variables are of functions of

r only. For 3-D spherical coordinates, 3-D MHD equations can be reduced to 2-D problem

of (r, θ) if radially symmetry is used. It is hard to reduce it to a 1-D problem because

h3 = r sin θ appears in both the first and second flux terms, especially for MHD where the

magnetic field B that satisfies the divergence-free condition cannot be a function only of

r. The problem reduction is very valuable in testing and validating numerical codes for

multidimensional problem. A highly accurate solution to the 1-D or 2-D problem can be

computed on a fined grid and used to test solutions computed with fully 3-D solver. This

can also be used to detect where the numerical method suffers from grid-orientation effects

that lead to the results being better resolved in some directions than in others.
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For a real application, the ideal MHD equations may subject to some source terms, such

as the external gravity or self-gravitation. For the gravitational MHD systems, the source

term is added to the momentum and energy equations. The others remain the same.

2.2. Eigenvalues and eigen-vectors

From the flux functions, we can obtain the Jacobian matrices

Ax(q) =
∂F

∂q
, Ay(q) =

∂G

∂q
, Az(q) =

∂H

∂q
,

It is observed that G and H can be obtained from properly index permuting. Therefore,

Ay and Az have similar structure as Ax. The eigenvalues and and eigenvectors for Ax have

been extensively studied by many authors (Brio & Wu 1988; Ryu & Jones 1995; Roe &

Balsara 1996). There are two set of eigenvectors for the eigen-system of Ax. One is a direct

extension of the one-dimensional system and the other is based on the modification proposed

by Powell et al (Powell et al. 1999). In the direct extension, the 5th component is ignored

and the rest is identical to the one-dimensional flux where B1 is a constant. The eigenvalues

for the 7× 7 systems are

λ1,7 = v1 ± cf , λ2,6 = v1 ± ca, λ3,5 = v1 ± cs, λ4 = v1,

where

ca =

√

B2
1

ρ

is the speed of Alfven waves, and

cf =





1

2



a2 +
B2

ρ
+

√

(

a2 +
B2

ρ

)2

− 4a2c2a









1

2

,

cs =





1

2



a2 +
B2

ρ
−

√

(

a2 +
B2

ρ

)2

− 4a2c2a









1

2

,

are the speeds of fast and slow waves respectively, and a is the speed acoustic wave given by

a =

√

γp

ρ
.

In the 8× 8 eigen-system of Powell, the corresponding eigenvalues are

λ1,8 = v1 ± cf , λ2,7 = v1 ± ca, λ3,6 = v1 ± cs, λ4,5 = v1,
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The corresponding eigenvectors have been given by many authors. We here adopted the one

from Powell et al.(Powell et al. 1999) for the 8-wave eigensystem.

For a dimensional splitting integration scheme, the CFL conditions along each row in

three directions can be calculated with (assume the same time step is used)

CFL = dt ·min

[ |v1|+ cf
h1dx1

,
|v2|+ cf
h2dx2

,
|v3|+ cf
h3dx3

]

,

where the minimum is over all of the cells. For a nonsplitting multidimensional scheme, the

CFL condition is

CFL = dt ·min

∣

∣

∣

∣

|v1|+ cf
h1dx1

,
|v2|+ cf
h2dx2

,
|v3|+ cf
h3dx3

∣

∣

∣

∣

2

.

It is noted that the nonsplitting multi-dimensional scheme may not be as efficient as dimen-

sional splitting schemes due to the restriction on the time step. It is also obvious that when

h2 or h3 is small, the CFL number becomes potentially large which restricts the time step to

be very small. This is one of the disadvantages to use the cylindrical or spherical coordinates

instead of the Cartesian grid.

Another difficulty of using cylindrical or spherical coordinates is that it has potential

singularity at r = 0, and the boundary condition there is also difficult to specify. For

cell-centered variables, the singularity problem can be avoided, But for the face-centered

variables, such as the magnetic field components, we have to design a scheme to solve or

bypass the problem.

3. Basic Solver

In this section, we describe the basic solvers for a single Cartesian grid. These solvers can

also be applied to cylindrical or spherical geometry with a slight modification. For verification

and numerical test, we have included several solvers in our code. We will describe them one

by one.

3.1. Riemann solver

The Godunov method and its high-order extensions require the solution of the Riemann

problem. In practical computation this is solved billions of times, making the Riemann

problem solution process the single most demanding task in the numerical method. Although
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the central upwinding scheme, described in (Kurganov et al. 2000) is called Riemann solver

free scheme, it is equivalent to HLL Riemann solver (Harten et al. 1983; Einfeldt 1998;

Einfeldt et al. 1991).

The exact Riemann solvers requires an iterative procedure to solve a nonlinear problem

and the associated computational effort may not always be justified. This effort may increase

dramatically by the complexity of the equations of state or the complexity of the particular

system of equations being solved. For MHD, the exact Riemann solver is far more costly

than the case of HD. In this subsection, we present several approximate Riemann solvers

that do not need an iterative process.

3.1.1. HLL or HLLE Riemann solver

The first solver we used is the central upwinding scheme, proposed by Kurganov et

al.(Kurganov et al. 2000). This solver is fast and does not need the characteristic decompo-

sition. Although it is called Riemann solver free method, we later found that it was equivalent

to HLL Riemann solver (see (Harten et al. 1983; Einfeldt 1998; Einfeldt et al. 1991)) except

that the acoustic signal speed is computed differently. The semi-discrete central-upwinding

scheme (see (Kurganov et al. 2000)) can be written in the following conservation form,

d

dt
ui,j =

Fi+ 1

2
,j(t)− Fi− 1

2
,j

∆x
+
Gi,j+ 1

2
(t)−Gi,j− 1

2

∆y
,

where the numerical fluxes Fi+ 1

2
,j are given by

Fi+ 1

2
,j =

aR
i+ 1

2
,j
f(uR

i+ 1

2
,j
)− aL

i+ 1

2
,j
f(uR

i+ 1

2
,j
)

aR
i+ 1

2
,j
− aL

i+ 1

2
,j

+
aR
i+ 1

2
,j
aL
i+ 1

2
,j

aR
i+ 1

2
,j
− aL

i+ 1

2
,j

[

uR
i+ 1

2
,j
− uL

i+ 1

2
,j

]

,

The numerical fluxes Gi,j+ 1

2
can be given similarly. Here uR

i+ 1

2
,j

and uL
i+ 1

2
,j

stand for the

corresponding right and left interface values at x = xj+ 1

2
. These values can be calculated

by limited reconstruction of a non-oscillatory polynomial for u at x = xj+ 1

2
. The one-sided

local speeds a∗
i+ 1

2
,j
are determined by

aR
i+ 1

2
,j

= max

{

λN

(

∂f

∂u
(uR

i+ 1

2
,j
)

)

, λN

(

∂f

∂u
(uL

i+ 1

2
,j
)

)

, 0

}

,

aL
i+ 1

2
,j

= min

{

λ1

(

∂f

∂u
(uR

i+ 1

2
,j
)

)

, λ1

(

∂f

∂u
(uL

i+ 1

2
,j
)

)

, 0

}

,

with λ1 < ... < λN being the N eigenvalues of the Jacobian ∂f

∂u
.
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It has been proved in (Einfeldt 1998; Einfeldt et al. 1991) that this method can

preserve the positivity, which is important when the kinetic or magnetic energy dominants

the total energy, for example, in a low-beta plasma (β = 2µ0P/B
2). The pressure can be

kept positive during time integration. Einfeldt also suggests that one-sided local speeds are

determined by

aR
i+ 1

2
,j

= max

{

λN

(

∂f

∂u
(uR

i+ 1

2
,j
)

)

, λN

(

∂f

∂u
(ua

i+ 1

2
,j
)

)

, 0

}

,

aL
i+ 1

2
,j

= min

{

λ1

(

∂f

∂u
(ua

i+ 1

2
,j
)

)

, λ1

(

∂f

∂u
(uL

i+ 1

2
,j
)

)

, 0

}

,

where ua is the Roe’s average states between uR and uL.

The HLL Riemann solver has strong diffusion on the rarefaction waves and in the contact

field. Several anti-diffusion improvements have been proposed. HLLC and HLLEM are two

of them.

3.1.2. HLLC Riemann solver

The HLLC, proposed by Toro, et al. (Toro et al. 1994), is a modification of the HLL

scheme, whereby the missing contact and shear waves are restored. It replaces the constant

intermediate state u∗ between the fastest and slowest waves with two intermediate state u∗R

and u∗L. The middle wave of speed a∗ is inserted between slowest and fastest signal speed

aR and aL. For hydrodynamics problem, we adopted Batten et al. (Batten et al. 1997)

approach to calculate the middle speed a∗.

Although MHD has more waves than HD, the HLLC can still be used after modification.

Following the derivation of Toro et al. (Toro et al. 1994), we derived a version of HLLC for

MHD. By applying Rankine-Hugoniot conditions across each of the waves of speeds aL, a∗, aR,

and assumption of the pressure remains constant across the contact wave, we derived the

middle wave speed a∗ to be

a∗ =
pR − pl + (Bx)

2
L − (Bx)

2
R + ρLuL(a

L − uL)− ρRuR(a
R − uR)

ρL(aL − uL)− ρR(aR − uR)
,

where p is the total pressure that consists of both the thermal and magnetic pressure. Then

the left and right middle state u∗L and U ∗R are derived based on the Rankine-Hugoniot

conditions.
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We found by numerical experiments that this approach did not work well for MHD

problem. The pressure can easily become negative. The problems occur when the middle

state of magnetic fields exceeds both the left and right states. So we enforce one constant

middle state for magnetic field across the slowest and fastest waves. The middle state of

the magnetic field can be given by the HLL Riemann solver. The rest of variables are

calculated via Rankine-Hugoniot conditions. This approach is reduced to the HD case when

the magnetic field components are all zeros. Detail of our discussion and derivation of HLLC

solver for MHD is described in (Li & Li 2003).

HLLC can dramatically improve the results of HLL solver. The increase in computa-

tional cost is much less than the HLLEM method, which will be described in the following

subsection, because HLLC does not need eigen-decompositions.

3.1.3. HLLEM Riemann solver

HLLEM is another approach, proposed in (Einfeldt et al. 1991), to improve the results

of the HLL solver for contact wave. An anti-diffusion term is added to the original HLLE

flux to reduce the diffusion at the contact wave, which results in

FHLLEM = FHLLE − aRaL

aR − aL

∑

p

δαpRp.

where the sum is over all of the relevent p, Rp are the right eigenvectors of the flux Jacobian

evaluated at the intermediate states, αp are the coefficient of the projection of uR− uL onto

Rp,

uR − uL =
∑

p

αpRp,

and δ is the anti-diffusion coefficient. It is also proposed as a modification to original Roe’s

approximate Riemann solver to preserve the positivity.

For HD, the anti-diffusion term is added only to the contact wave. For a MHD problem,

the anti-diffusion term needs to be added to all but the fast magneto-sonic waves. It is

claimed in (Wesenberg 2002) that the MHD-HLLEM solver is the most effiicient solver

in terms of computational time versus error among several solvers that have been tested.

However, as we have seen, to calculate the anti-diffusion term, partial eigen-decomposition

is required. That’s why it costs more than the HLLC solver.
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3.1.4. Roe’s original Riemann solver

We also implemented the Roe’s original approximated Riemann solver for our MHD

code. Both seven-wave and eight-wave eigen-systems are implemented. The detail of the

Roe’s solver for MHD are described in (Powell et al. 1999). In order to handle the source

term correctly, we used an unsplitting and semi-discretized version of the Roe’s method. An

entropy fix is also implemented to improve the robustness of the method.

3.1.5. Hybrid Riemann solver

We also combined the HLLE solver and Roe’s Riemann solver together in our MHD code.

As proposed in (Janhunen 2000), we used the Roe’s Riemann solver during the computation

but also calculated the HLLE middle state. If any unphysical states (e.g., negative pressure)

occur, we instead use the HLLE Riemann solver.

3.2. Data Reconstruction

The above Riemann solvers are proposed for 1-D problem and first order method. To

achieve the high order accuracy in space, the second or higher order reconstruction is re-

quired. We have included several data reconstructions in our code. It was observed that

even if the discretization of the scheme is of second order, high order (higher than 2) data

reconstructions have better resolution near discontinuity. That’s why we also include several

4th order or 3rd order data reconstruction in our solver. We should mention that for robust-

ness, the data reconstruction should be applied to the primitive variables rather than the

conservative variables. The proposed data reconstruction works very well for the second or-

der schemes. However, for other high order methods, the reconstruction in the characteristic

space might be needed to avoid the spurious oscillations.

3.2.1. Piecewise linear reconstruction

In this reconstruction, we use piecewise linear profile,

ui(x) = ui +
x− xi
∆x

∆ui,
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where ∆ui is a limited slope for cell [xi− 1

2
, xi+ 1

2
]. There are several slope limiters available.

In our solver, we use two types of limiter. The first type has form

∆ui = minmod

(

θ(ui+1 − ui),
1

2
(ui+1 − ui−1), θ(ui − ui−1)

)

,

which is a one-parameter family of the minmod limiters and θ ∈ [1, 2]. Note that larger

θ corresponds to less dissipation, but still non-oscillatory limiters. For θ = 2, it becomes

Woodward limiter. These minmod type limiters are not smooth functions with respect to u.

They will raise convergence difficulty for an iterative method in either steady-state solutions

or in an implicit time solver.

The other limiter we used is a smooth function of u,

∆ui =
2(ui+1 − ui)(ui − ui−1) + ε

(ui+1 − ui)2 + (ui − ui−1)2 + ε

1

2
(ui+1 − ui−1),

where ε is a tiny positive constant in case of ui = ui+1 and ui = ui−1. This limiter is

smooth and it preserves the monotonicity of the original profile of u. However, the contact

discontinuity resolved by this limiter is not as sharp as the minmod limiters with large β

value.

3.2.2. Central WENO reconstruction

WENO reconstruction can achieve higher than second order accuracy. There are two

types of the WENO reconstruction: upwinding WENO reconstruction, which is usually

implemented in characteristic space, and the central WENO reconstruction, which is imple-

mented directly to the component variables.

We have included three implementations for our central WENO reconstruction. The

first one, which was proposed in (Levy et al. 2000) uses a five-point stencil to achieve 4th

order accuracy. The second one, called compact central WENO which was proposed in

(Levy et al. 2002), uses a three-point stencil to achieve 3rd accuracy. The third one is a

fully 2-D compact central WENO reconstruction that was proposed in (Levy et al. 2002).

The difference between the second and the third one is that the third one included a mix-

derivative in the construction polynomial to reflect a fully 2-D interpolation.
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3.3. Second order in time

In this subsection, we discuss how to achieve the second order accuracy in time. We

will describe three approaches that are implemented in our solver.

3.3.1. MUSCL Hancock approach

MUSCL stands for monotone upstream-centered scheme for conservative laws. It was

proposed by van Leer (van Leer 1979). One of key steps for MUSCL approach is high

order monotone-preserved data reconstruction, which we described in section 3.2. In this

subsection, we describe one of the MUSCL implementation—MUSCL Hancock method. It

is implemented in our both dimensional splitting and unsplitting version. It consists of a

prediction and a correction step. In the prediction step, we calculated the value un+
1

2 at

time tn+ 1

2
(here we discribe only the 1-D case)

u
n+ 1

2

i = uni +
1

2

∆t

∆x

(

F (uni +
1

2
∆xuni )− F (uni −

1

2
∆xuni )

)

.

where ∆xuni is the limited slope that is obtained from the data reconstruction. In the next

step we use u
n+ 1

2

i and ∆xuni to construct the left and right interface values at time tn+ 1

2
. In

x direction, we have

uL
i+ 1

2

= u
n+ 1

2

i +
1

2
∆xuni , uR

i+ 1

2

= u
n+ 1

2

i+1 −
1

2
∆xuni+1.

Finally, a Riemann problem with left and right values is solved by any Riemann solver we

discribed in section 3.1..

Since the Hancock prediction does not need the characteristic decomposition, it can

be done fast. It is also noted that the limited slopes are reconstructed only once during

the whole process. Therefore, the MUSCL-Hancock approach is much more efficient than a

general method of lines (MOL) second-order time integration approach. Like the numerical

methods of the second order fully-discretized PDE, the MUSCL-Hancock approach also has

benefit in parallel and AMR computation because only one data communication is required

during a full-step time integration.
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3.3.2. Lax-Wendroff type of integration

This approach based on the idea of classical Lax-Wendroff scheme, and it relies on

converting all the time derivatives in a temporal Taylor expansion into spatial derivatives

by repeated using the PDE and its differentiated versions. The second-order version is

quite simple and has been extensively used for solving multi-dimensional problems with

dimensional splitting.

For Godunov method, the key idea is to construct a time-centered spatially second

order accurate variables or fluxes at the zone interface. Ryu and Jones (Ryu & Jones 1995)

extended Harten’s second order method for HD to MHD to construct the time-centered

fluxes. Balsara (Balsara 1998) extended Colella’s method to construct the time-centered

variables and then used them in Riemann solvers. Both methods are constructed for 1-D

problem. For multi-dimensional problems, it requires dimensional splitting approach.

3.3.3. Multi-stage integration

Mutl-stage integration is often called the method of lines (MOL) approach. The spatial

discretization is first used to obtain a semi-discretized ordinary differential equation (ODE)

(or differential-algebraic equation (DAE)) system, and then an ODE/DAE solver is used to

advance the time to the next level. We have implemented the improved Euler method, second

order Runge-Kutta method and third order TVD Runge-Kutta method in our code. All of

the methods we used are explicit time integration. The implicit time integration might be

necessary for the equations that contain the diffusion or viscosity term. We have developed

an implict AMR method (Li et al. 2001) for such problems.

3.4. Higher order method

We have three high than second order methods implemented for HD: third order central

WENO scheme, piece-wise parabolic method (PPM), and fifth order WENO finite-difference

scheme. Currently only the fifth order WENO scheme is implemented for MHD. When a

high order scheme is used, the number of ghost cells may need to increase. For example, the

PPMLR from VH1 code uses 6 ghost cells and WENO three ghost cells.

The fifth-order WENO schemes described in Jiang and Shu (Jiang & Shu 1997) com-
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bined with third-order TVD Runge-Kutta method is implemented in our code.

3.5. Multi-dimensional problem

The easiest way to extend one-dimensional numerical schemes to more space dimensions

is to use dimensional splitting approach. A multidimensional problem is simly split into a se-

quence of one-dimensional problems. This approach has been widely used by many numerical

methods including the PPM method. To minimize the splitting error of this approach, the

Strang splitting (Strang 1966) is often adopted. For example, for a 2D dimensional splitting

method, if Lx
dt stands for the integration in x-direction and Ly

dt stands for the integration in

y-direction, then Lx
dtL

y
dtL

y
dtL

x
dt stands for a whole cycle of the integration that contains two

time steps,

un+2 = LxdtL
y
dtL

y
dtL

x
dt(u

n). (6)

If the 1D operator is second order accurate, the Strang splitting is second order accurate.

Note that the time step in each operator of (6) must be the same to achieve the second

order accuracy, which is harder to implement in connection with variable-size time steps.

Another approach we used is the unsplit scheme, which is very much like a MOL ap-

proach. The PDE system is first discretized into an ODE system, and then the Runge-Kutta

time stepping method is used. The spatial discretization in each direction for a finite-

difference method is simply a spatial discretization for a 1-D problem. Finite-difference

WENO schemes use this approach. For a finite-volume method, the one-dimensional Rie-

mann solver can be used as a basic tool in the determination of the interface fluxes.

3.6. Source term and multi-dimensional problem

The system of equations for conservation law can have many source terms. The stiff

source terms can arise in the reacting flow and combustion problem. The source term can

act as an external force to the fluid, such as gravity. The Geometric source terms can be

generated when a phyiscal problem in three space dimensions is reduced to a mathematical

problem in one or two dimensions by taking advantages of known symmetries in the solution.

Like a multi-dimensional problem, the source term can be solved by a fractional step

method. We assume the source term contains no spatial derivatives. Then the Strang
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splitting can be implemented as

un+1 = S(
1

2
∆t)L(∆t)S(

1

2
∆t)un, (7)

where S(1
2
∆t) is an operator for source term. Clawpack (Leveque 2003) has implemented

this approach for source term.

For a fractional step method like (7), we typically need to impose boundary conditions

in the hyperbolic step of the procedure. The boundary conditions for the original PDE

must be used to determine any boundary conditions needed fro the fractional steps, but

the connection between these is often nontrival. A more general procedure for deriving the

proper intermediate boundary conditions for a linear hyperbolic equations is discussed in

(Leveque 1986).

There are some other potential pitfalls in using a factional-step method to handle source

terms in relation to computing a steady-state solution, or a hydrostatic equilibrium ambient

field. In the fractional step method, the hydrodynamics and the external gravity force are

not very closely coupled. However, the maintaining the hydrostatic equilibrium (HSE)relies

on the exact cancellation of the two possibly large term, the pressure gradient and the

gravity force, which are calculated in different way. Spurious velocities are generated when

the cancellation is not exact. Flash has applied a special treatment to the Riemann solver

and the boundary conditions to maintain HSE.

We prefer to use the unsplit version when solving problems with source terms. It is easy

to add source term to the semi-discretization system. Then the system of ODEs os solved

by a stable ODE solver.

3.7. Constraint transport for magnetic field

We used the staggered mesh technique, which was proposed by Balsara and Spicer

(Balsara & Spicer 1999), to preserve the divergence-free of the magnetic field. We define

the magnetic field components on the face centers and all the other fluid quantities are still

defined at cell centers. For use in step of calculating the fluxes by the Godunov methods, we

also define the magnetic field components at the cell centers, say as intermediate variables

by averaging the values at the face centers. The detail of the mapping from the face-centered

values to the cell-centered values is described in Section 3.8.

The electro-magnetic force Ω = −u × B are defined by averaging the fluxes calculated
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at the grid interfaces: namely

Ωi,j =
1

2
(fy,i+ 1

2
,j + fy,i− 1

2
,j)−

1

2
(fx,i,j+ 1

2
+ fx,i,j− 1

2
).

Then the magnetic field components are updates by Yee’s method,

Bn+1
x,i− 1

2
,j

= Bn
x,i− 1

2
,j
− ∆t

∆y
(Ωi,j − Ωi,j−1),

Bn+1
y,i,j− 1

2

= Bn
y,i,j− 1

2

+
∆t

∆x
(Ωi,j − Ωi−1,j). (8)

It is easy to verify that the divergence free is preserved exactly by the above updating if the

divergence free condition is satisfied at step n.

Dai and Woodward (Dai & Woodward 1998) proposed another staggered mesh ap-

proach which can be taken as a post-processing procedure for the Godunov method. In this

approach, all the variables at the cell-center (including those intermediate magnetic compo-

nents) are advanced in time first. Then spatial and temporal interpolation is used to obtain

the cell corner centered magnetic field and velocity field. The electric field at the cell corner

is then calculated and Yee’s method (8) is used to updated the magnetic field at the face

center.

Toth (Tóth 2000) proposed a constrained transport/central-difference (CT/CD) method

which works directly on the cell-centered values of the magnetic field. Although it is equiv-

alent to the staggered grid method (Balsara & Spicer 1999) for a single mesh, it does

not work under AMR framework. That is to say, it is difficult (or impossible?) to define

an prolongation reconstruction to preserve the divergence free condition when the mesh is

adapted.

3.8. From face-centered value to cell-centered value

The implementation of Godunov type Riemann solver for MHD requires all of the vari-

ables stay at the cell-centers as finite-volume average. Given the field components located

at the face center, we can calculate the cell-average value of the field components located at

the cell-center. We illustrate it by a 2-D problem.

Assume linear profile is used in reconstruction of face values on the coarse face. The

coarse cell is [x1, x2]× [y1, y2], which may not be Cartesian grid. The linear profile on upper

and lower face is

B±y (x) = B±y +∆xB
±
y (c(x)− c0),
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where B±y are values for upper and lower coarse faces, ∆xB
±
y are the limited slopes, c0 is

the face center for [x1, x2], and c(x) is the face center for [x1, x]. For the face located at

x ∈ [x1, x2], the face component is defined by

Bx(x) · Ax(x) = B−x · Ax(x1) +B−y (x) · A−y (x)−B+
y (x) · A+y (x),

where Ax(x) is the face area for the face [y1, y2] located at x, Ay(x) is the face area for the

face [x1, x].

The cell-average value of Bx is

Bx =
1

V

∫ x2

x1

(Bx(x) · Ax(x))dx.

For Cartesian grid, c0 =
1
2
(x1+x2), cx = 1

2
(x1+x), Ax(x) = y2−y1 = ∆y, Ay(x) = x−x1,

and V = ∆x ·∆y. The cell-centered value of Bx is

Bx =
1

V

∫ x2

x1

(

B−x ·∆y +
(

(B−y −B+
y ) + (∆xB

−
y −∆xB

+
y )

1

2
(x− x2)

)

(x− x1)

)

dx.

After simplification and applying the divergence-free condition, we obtain

Bx =
(B−x +B+

x )

2
+

(∆x)2

12

∆xB
+
y −∆xB

−
y

∆y
. (9)

Similarly, we can obtain the cell-centered value for By, which is

By =
(B−y +B+

y )

2
+

(∆y)2

12

∆yB
+
x −∆yB

−
x

∆x
. (10)

Note that (9) and (10) are different from those obtained by Balsara (Balsara 2000). This

reflects the difference between the cell-average value at the cell-center and field component

values at the cell-center. For a second order method, the high order terms in (9) and (10)

can be neglected, and the cell-centered values are the just the arithmetic average of the

face-centered values.

4. AMR

We used the Berger-Colella (Berger & Colella 1989) AMR strategy in our code to

handle those regions that need fine grid resolution. The detail of our implementation for

general time-dependent PDEs was described in (Li & Hyman 1998a,b). To be concise, we

here only describe the outline of our implementation.
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Given a grid and solution on it, we first flag those cells that require refinement and then

cluster them into several rectangular grids, called patch. For each newly-generated patch, we

interpolate the solutions from the coarse grid to the new grid. If the old mesh already has

some refinement that overlaps with the new mesh, the solution should be copied from the old

fine mesh to the new one. The whole regridding procedure from the old mesh solution to the

new mesh solution is called prolongation. If the initial conditions are defined analytically,

the initial conditions on the new grid are also defined analytically. Each patch can be treated

as a single grid. Further refinement can be done recursively until no refinement is needed or

the finest refinement level is reached.

During the time integration, the coarse grid is integrated first, and then the fine grid.

The boundary conditions of the fine grid are defined by either external boundary condi-

tions, or adjacent sibling patches, or interpolations from the coarse parent grid. After the

integration of the fine grid is done, we transfer the more accurate fine grid solutions to the

parent coarse grid. This procedure is called restriction. The restriction could cause a loss

of conservation at the interfaces between a fine and a coarse grid. A flux correction step is

proposed in (Berger & Colella 1989) to maintain that the consistent fluxes are used at the

fine-coarse interface.

Since the time stepsize is usually determined by the finest grid. Berger and Colella used

a local time step method to improve the efficiency. This local time step method allows the

fine grid takes smaller time step than the coarse grid before they reach the same time level.

We have enhanced the strategy of Berger and Colella with several features in (Li &

Hyman 1998a,b). We allow the refinement to be controlled by a user-input grid file. We ex-

tended Berger’s approach to method of lines (MOL) solver with high order time integrations.

We improved the clustering algorithm by using a adaptive threshold. We also implemented

the adaptation based on the geometry, the use of staggered grids and the choice of the

refinement ratios.

4.1. Adaptation for geometry

In our implementation, the base grid can be either uniform grid, tensor-product grid,

general curvilinear grid. For rectangular grid, we also allow the geometry to be Cartesian

grid, Cylindrical grid, or Spherical polar grid. Although the basic algorithm is the same for

the geometry, the implementation for prolongation and restriction is different for different



– 21 –

geometries. We will describe the algorithm for cylindrical and spherical grid in section 6.

4.2. Staggered grid

The staggered grid is allowed in our implementation to handle the vector field. For

finite-volume method, the solution can be put at cell-center, face-center, or edge center. For

finite difference method, the solution may be node-centered. The staggered grid can pose

difficulty in data structure and management in AMR framework, since each component of

the solutions may have different length on a single grid. We propose to use a single pointer

to represent the index location for a patch in AMR hierarchical data structure. For example,

if a problem has nu components on a nx× ny grid, the patch will be allocated a space equal

to nxnynu variables. In this way, some components of the solutions may not fill the whole

patch. The cell-centered component only has (nx − 1)(ny − 1) variables, whereas the face-

centered component has nx(ny − 1) variables in x-direction and has (nx − 1)ny variables

in y-direction. Only the node-centered component has nxny variables. This data structure

wastes the storage a little bit. However it is easy to manage for staggered grid.

We also proposed a new approach to preserve the divergence-free vector field when the

mesh is adapted. This new approach, which is described in (Li & Li 2003), works efficiently

for any refinement ratio and any geometry.

4.3. Periodic boundary conditions for staggered grid

In a staggered grid, the field components may locate at the face. If an application

has periodic boundary conditions, the field components located at the domain boundaries

may be calculated twice in different patches in the AMR grids. It is important to treat

the periodic boundaries just as the internal boundaries to ensure the conservation cross the

domain boundaries. If a patch shares with a periodic boundary, or is within a distance of

number of ghost zones to a periodic boundary, it can be potentially an updating partner for

a patch on the other end. We solved this problem by adding another virtual patch, which is

out of computational domain, on the other end, and copying the solution variables from the

internal patch according the periodic boundary conditions.
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4.4. Adaptation on time solver

One of important and useful features in our AMR framework is to allow different time

solvers. As far as a solver for a single mesh is concern, the time integration can be widely

different. It can be either dimensional splitting, which is common for Godunov solver, or

dimensional unsplitting. For systems that contain source terms, an operator splitting method

is also often used. The time integration can be method of lines (MOL) approach, where a

semi-discretized ODE system is obtained first by spatial discretization and then higher order

ODE solver is used. To accommodate the need for different solver, the traditional Berger’s

time integration approach must be changed.

4.4.1. Lax-Wendroff type time discretization

The Lax-Wendroff type time discretization uses high order spatial derivatives to replace

time derivatives in order to achieve the high order accuracy. The second order accuracy

method is usually used. This approach usually has a more compact stencil than the MOL

multistage approach. Like the forward Euler method in time integration, this approach

requires only the data at un to obtain the solution at un+1. Therefore it is easy to be

implemented in an AMR framework.

4.4.2. Operator splitting method

The Lax-Wendroff type of scheme works efficient for 1-D scalar or system of equations.

However, it is much more complicated for multi-dimensional problems. The dimensional

splitting method is usually adopted for those cases. All of the splitting methods can pose

difficulties for AMR framework. These methods are usually implemented via alternative

direction methods (6) rather than the fractional step method (7), because the (7) is not only

inefficient but also inaccurate, for the CFL number is only half of the requirement and small

CFL number introduces more numerical diffusion and dispersion.

In Strang splitting (6), each procedure (two-steps) contains four sweeps for a 2-D prob-

lem, and the four sweeps should use the same time steps. This may pose a problem in

treating each sweep as an independent small step in an AMR framework. The easiest way

is to combine the four sweeps as one big step in an AMR framework. The difference be-
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tween this one big step and any other one-step PDE solver for a single grid is that the

communication between patches in the same level is required in each sweep in a big step.

Another difficulty with (6) is that the cosntraint transport on staggered grid we described

in section 3.7 needs special treatment. Each sweep acts as a finite-volume method for cell-

average variables. The boundary condition is defined no longer for the staggered grid but

for cell-centered values. In order to compute the EMF at each edge (nodes in 2D case), the

fluxes should be collected from each sweep in a larger region (one more extra zone than the

interested region). The contraint transport can be taken as a postprocessing procedure after

all of the other quantities have been calculated.

One potential drawback for this approach is that the internal boundary conditions for

each fine patch may not be updated timely during the sweep if the data at the boundaries are

obtained through interpolation from the coarse parent patch, because we did not save any

intermediate information for the coarse sweep. Similarly, the coarse sweep may not updated

timely with the most current data in the fine sweep. To overcome this problem, we propose

a different approach. We used the locked time step method for this time solver. The locked

time step means that all of the grids at different levels use the same time step and advance

simultaneously to the next time level. One might argue that the very fine time steps used

on the coarse grid introduces more numerical diffusion and dispersion. A counter argument

to this, suggests that this can never be too serious because the reason that these grid blocks

were coarsely refined was that there was not very much structure there anyway.

Because of the locked time step, we can update the boundary conditions for each fine

patch and upate the data for each coarse patch with the most current information.

4.4.3. Multistage time discretization

This approach, namely the method of lines plus an ODE solver, has an advantage of

simplicity, both in concept and in coding. Unlike the splitting approach, the multistage time

discretization can achieve arbitrary order of accuracy, depending on the spatial discretization

and order of the ODE solver. In this approach, it requires data communications between

the AMR grids in each of the intermediate stages. The external boundary conditions also

needs to be computed in each stage. Hence we cannot plug this type of solver directly into

the AMR framework.
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One interesting issue is how to interpolate the coarse parent grid solutions to get the

boundaries data for the current level grid at intermediate stage. There are two approaches:

one is to do both time and space interpolation with the coarse parent data saved at tn and

tn+1, the other is to save a copy of the intermediate state of the coarse parent data and do

only the space interpolation. We had compared the two approaches and found they produce

almost the same results. Since the second approaches requires more storage, we adopt the

first one in our AMR framework. We also improve the first approach that only a space

interpolation is required for only the first stage. The interpolation is applied to the time

derivatives du/dt rather than to the solution u. Therefore, when the interpolation is needed

for u at intermediate stage, it can be easily calculated.

Another problem with the multistage time discretization is how to calculate the flux

at the interface, which is required for flux conservation by a correction step on the coarse

parent flux. We cannot take the flux at the final stage as the flux for the whole time step. It

is also inefficient to do the flux correction for each intermediate stage. We instead obtain the

flux for the whole time step by composing the flux at each stage together. The composing is

not simply a sum over all of the stages. Take the third order TVD Runge-Kutta solver (Shu

& Osher 1989) as an example. The time discretization contains three stages,

u(1) = un +∆tL(un, tn),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn +∆t),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t),

where L(u, t) is a spatial discretization operator. As we can see, each stage has a contribution

to the total flux of the whole time step. The total flux should be

fn,n+1 =
1

6
f(un, tn) +

1

6
f(u(1), tn +∆t) +

2

3
f(u(2), tn +

1

2
∆t),

where f(u, t) the flux evaluation at each stage.

5. Parallel

Our AMR implementation is also parallelized via MPI approach so that it can be used

for parallel computation with a large number of processors. To improve the efficiency of our

parallelization, we modify our AMR implementation in several aspects.
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5.1. Locked time step versus local time step

We have compared the locked time step versus the local time step method in (Li &

Hyman 2002), and found that the local time step method is only slightly (about 50%) better

than the locked time step for a 2-D problem with refinement area more than 8%. The local

time step method can potentially become a serial bottle-neck for parallelization with a larger

number of the processors, because each level must be done sequentially with the coarse level

first. However, for the locked time step method, all of the grids at different levels can advance

simultaneously. The local time step also requires extra memory to be allocated to store the

temporary copies of the solutions.

We should pointed out that not every time integration can be done simultaneously for

all the grids at different levels. For high order MOL approach, cf., 3rd order Runge-Kutta

time integration, the boundary conditions are required for intermediate step during a full-

step integration, which might require interpolations in time and space from the coarse parent

grid. Then the grids on each level must be advanced sequentially.

5.2. Clustering

We have adopted Berger and Rigoutsos (Berger & Rigoutsos 1991) clustering strategy

with a adaptive threshold. It is fast and efficient for serial computation. However, it is done

at an entire level so that it is difficult to parallelize. Apart from that, clustering at an entire

level also requires too much communications for parallel machines with distributed-memory.

For these reasons, we have applied the clustering to each of the single-grid at a level ,which

is easily parallelized. It might produce more single grids than one might obtained if one had

used the clustering at an entire level. However, it does ensure that all the flagged cells are

fully covered. Moreover, the grid generated by this clustering approach has only one parent,

which may simplify the data structure and reduce the communications between different

levels.

5.3. Load balancing

We have two types of load balancing in our implementation: global load balancing and

local load balancing for each level. If the time integration can be synchronized and the
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number of the processors may be larger than the number of the patches in any fine level, a

global load balancing should be used to utilize the power of all of the processors. On the

other hand, if the number of processors is less than the number of the patches in any level,

the local balancing for each level may be used to improve the efficiency.

Given a number of grids, we have two concerns when doing the load balancing. The

first is to ensure that each processor has the same amount of load so that they can finish

the computational tasks at roughly the same time. The other concern is to reduce the

communication between different levels to as small as possible. There is a trade-off between

these two concerns.

One possibility arise that all of the grids have the same size to make it easy for load-

balancing. This strategy has been used by PARAMESH (Macneice et al. 2000). PARAMESH

has been a key component in several MHD and HD codes including FLASH code at University

of Chicago and BATSRUS at University of Michigan. However, when the number of the

grids is not divisible by a total number of the processors, which is very common in scientific

computation, the load will be out of load balance. For that reason, we do not require all

the grids to have the same size. Moreover, our load balancing is designed so that it actually

capitalizes on this difference sizes to achieve precise load balance.

Ideally, we wish to achieve that the load is balanced among the processors and the

inter-processor communication between different levels is minimized to zero. However, to

achieve this goal, it might require more communications in load balancing procedure. DAGH

(Mitra et al. 1997) used a composite decomposition of the adaptive grid hierarchy to achieve

zero inter-grid communications. The composite decomposition requires re-distribution that

requires more data movement. In our implementation, we adopted a simple approach. We

first assigned that each fine grid share the same processor with its parent. Since each grid

has only one parent, this step can be easily done. Then we balance the load among different

processors by moving and splitting the patches: We calculate the load for each processor and

move the patches from the processor with the maximum load to the one with the minimum

load under the condition that the computational load of the moving patch is no more than

the difference of the average load and minimum load. This phase continues until either the

load is balanced or patches are too large to be moved. If imbalance still exists, we then find

the largest patch in the processors with the maximum load and split it into two patches along

the longest dimension. One of the two split patches should have size that could make the

processor with minimum load reach the balanced load. These two steps execute in parallel
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until the load is balanced among all of the processors.

We note that by moving and splitting patches the future inter-grid communication might

increase because the moving grid has different processor with its parent. InAn effort is being

done to reduce the communication in the moving phase.

6. Spherical and Cylindrical Geometry

6.1. Discretization

By introducing general curvilinear coordinates, we have also introduced the possibility

of numerical errors when differencing near coordinate singularities. The occurrence of this

error can be easily be demonstrated in spherical polar coordinates. For radial derivatives,

we need to difference
1

r2
∂

∂r
(r2F ). (11)

There are three central differencing,

1

r2
∂

∂r
(r2F ) ≈ ∆(r2F )

r2∆r
=

r2iFi − r2i−1Fi−1
[(ri + ri−1)/2]2(ri − ri−1)

, (12)

1

r2
∂

∂r
(r2F ) ≈ ∆(r2F )

∆(r3/3)
=
r2iFi − r2i−1Fi−1
r3i /3− r3i−1/3

, (13)

1

r2
∂

∂r
(r2F ) ≈ 2F

r
+

∆F

∆r
=

4Fi− 1

2

ri + ri−1
+
Fi − Fi−1
ri − ri−1

, (14)

Although all of these difference approximations are almost identical at large radii, near the

origin (ri−1 → 0) there is a serious discrepancy between them. To see the difference, we

assume that ri−1 = 0. Then equations (12) to (14) become

1

r2
∂

∂r
(r2F ) ≈ 4Fi

ri
, (15)

1

r2
∂

∂r
(r2F ) ≈ 3Fi

ri
, (16)

1

r2
∂

∂r
(r2F ) ≈

4Fi− 1

2
+ Fi − Fi−1

ri
. (17)

If F = c is constant, then

1

r2
∂

∂r
(r2F )|r=r

i− 1
2

=
2c

ri− 1

2

=
4c

ri
,
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which means that (12) and (14) is accurate while (13) has large error by c/ri. If F = r is a

linear function, then
1

r2
∂

∂r
(r2F ) = 3,

which means (13) and (14) is accurate while (12) has large error by 1. If F = r2 is a quadratic

function, then
1

r2
∂

∂r
(r2F )|r=r

i− 1
2

= 4ri− 1

2
= 2ri,

which means only (14) is correct, and (12) has error by 2ri, (13) has error by ri. If Fi− 1

2
is

approximated by

Fi− 1

2
=

1

2
(Fi + Fi−1),

then even (14) has error by ri. Because ri is close to the origin, we can assume that ri ¿ 1.

Then the error c/ri can be large. Therefore (13) is not recommended for use near the origin

in a finite-difference method.

If a finite-volume (or control volume) method is used, we need to integrate (11) and

then divide it by the volume difference, which yields

∫

dr
∫

dθ
[

1
r2

∂
∂r
(r2F )r2 sin θ

]

∫

dr
∫

dθ(r2 sin θ)
≈ r2iFi − ri−1Fi−1

r3i /3− r3i−1/3
,

which is exactly the finite difference approximation (13). However, it has different meaning.

In the finite-volume sense, (13) means the approximation to the volume average value of

(11), whereas in the finite-difference sense, it means the point value at the center of the

volume. After carefully calculation, we found that for F = c, F = r and F = r2, (13) has

no error. Therefore, if the finite-volume is to be used, only (13) is recommended.

Similar problems occur from differencing the polar angle derivatives, where we approx-

imate
1

r sin θ

∂ sin θG

∂θ
.

Using the same finite-volume method, we obtain

∫

dr
∫

dθ
[

1
r sin θ

∂ sin θG
∂θ

r2 sin θ
]

∫

dr
∫

dθ(r2 sin θ)
=

(Gj sin θj −Gj−1 sin θj−1)

cos θj−1 − cos θj

1
2
r2i − 1

2
r2i−1

1
3
r3i − 1

3
r3i−1

The source term should also be approximated by the same method as other terms. For
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spherical polar coordinates, the source term is

S =












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
















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




















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





=

































0

(ρ(v2θ + v2φ) + 2p+B2
r )/r

(ρ(v2φcotθ − vθvr) +BrBθ + (p+ 1
2
(B2

r +B2
θ −B2

φ))cotθ)/r

(−ρ(vφvθcotθ + vφvr) +BφBr +BφBθcotθ)/r

0

Ω3/r

(Ω1cotθ − Ω2)/r

0

































(18)

If the finite volume method is used, the source term should be approximated in a finite-

volume sense. That is to replace cotθ with

∫

dr
∫

dθ(cotθr2 sin θ)
∫

dr
∫

dθ(r2 sin θ)
=

sin θj − sin θj−1
cos θj−1 − cos θj

,

and replace 1/r with
∫

dr
∫

dθ(1
r
r2 sin θ)

∫

dr
∫

dθ(r2 sin θ)
=

1
2
r2i − 1

2
r2i−1

1
3
r3i − 1

3
r3i−1

,

in (18). Approximating (18) with the cell-centered values of r and θ directly will result in

large error near origin.

6.2. Staggered grid and magnetic field components

To maintain the divergence free conditions of magnetic field components, we treat them

as the face-average variables located at the face-center, and hence a staggered grid has to be

used. The divergence of a vector field and its discretization for the cylindrical and spherical

coordinates is different from that for the Cartesian grid. In 2-D (r, θ) of the spherical

coordinates, the divergence condition becomes

∇ ·B =
1

r2
∂(r2Br)

∂r
+

1

r sin θ

∂(sin θBθ)

∂θ
. (19)

The evolution equations for Br and Bθ are

∂Br

∂t
=

1

r sin θ

∂(sin θΩ3)

∂θ
, (20)

∂Bθ

∂t
= −1

r

∂(rΩ3)

∂r
. (21)
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We again have three options to discretize (19), (20) and (21), as indicated in (12) to (14).

For the staggered grid, Br and Bθ are face-centered variables that have face average values.

Integrating (19) for the cell (i, j) we obtain,

∇ ·B =
1

∆V
((Bri

r2i −Bri−1
r2i−1)(cos θj−1 − cos θj) +Bθj

ri− 1

2
sin θjdr −Bθj−1

ri− 1

2
sin θj−1dr)

(22)

where ∆V = (1
3
r3i − 1

3
r3i−1)(cos θj−1 − cos θj) (where we drop dφ in our formulations) is the

cell volume. Note that r2i (cos(θj−1−cos θj) is the area of the face (i, j− 1
2
) , and ri− 1

2
sin θjdr

is the area of the face (i − 1
2
, j), the discretization is in good agreement with the physical

definition of the divergence. At the origin r = 0, we have only three faces, and hence we do

not need to worry about the value of Br at the origin.

The equations of (20) and (21) should be discretized in such a way that if (22) is zero

at t = tn, it remains zero at t = tn+1. Following Yee’s method for the Cartesian grid, we

discretize (20) and (21) as follows

Bn+1
ri
−Bn

ri

∆t
=

sin θjΩi,j − sin θj−1Ωi,j−1

ri(cos θj−1 − cos θj)
, (23)

Bn+1
θj
−Bn

θj

∆t
= −riΩi,j − ri−1Ωi−1,j

ri− 1

2
dr

. (24)

Note that we use (cos θj−1 − cos θj) rather than sin θj− 1

2
dθ in the discretization of Br to

maintain that (22) is zero.

ZEUS code (Stone & Norman 1992) used sin θj− 1

2
dθ to discretize sin θdθ in (22) and

(20). We think our discretization is more accurate than theirs as regard the area of the

interface.

6.3. Singularity of magnetic field at origin

As we have mentioned, at origin, Br has no unique solutions. The initial Br at the

origin can be calculated by a potential method. We are concerning how to advance Br at

the origin. Although it is not used in the calculation of (22), it is needed in calculating the

cell-centered value of Br. Therefore, we cannot assign a nominal value to it at a given time.

Suppose that all of Br and Bθ are known except the Br at origin. We can use (14) to
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discretize (19) and obtain

4Br 1
2

+Br1 −Br0

r1
+

sin θjBθj
− sin θj−1Bθj−1

r 1

2
(cos θj−1 − cos θj)

= 0.

Let Br 1
2

= 1
2
(Br0 +Br1), we obtain

Br0 = −3Br1 − 2
sin θjBθj

− sin θj−1Bθj−1

(cos θj−1 − cos θj)
.

This approach cannot be used in a cylindrical coordinate. An alternative approach is

to use the Br calculated at the cell-centered by the Godunov method and the value of Br1

to interpolate the value Br0 .

6.4. Boundary conditions

For the spherical coordinates, the range of θ is [0, π], the boundary at any r = r0 is

sphere surface. At origin, r = 0, the sphere is degenerated into a point. Although, r < 0

makes no sense in reality, the ghost cell at the origin does have meaning. The values of

the ghost cell at (−r, θ, φ) are defined by the values at (r, π − θ, φ + π). For the vector

field v and B, ~eθ remains the same, whereas ~er and ~eφ have opposite directions. Hence, the

density, energy, velocity and magnetic component in θ direction at (−r, θ, φ) should take the

same values as those at (r, π − θ, φ + π), while the velocity and magnetic components in r

and φ directions should take the negative of values in the corresponding active zones. This

boundary condition is identity to the reflecting boundary conditions for Cartesian grid with

the reflecting interface to be θ except that the vector field component in φ direction is set

to negative of the value in the corresponding active zones.

Similarly the boundary conditions at θ = 0 and θ = π can be derived in the same way.

At any θ = θ0, the boundary is a cone surface. However, the cone is reduced to a line at

θ = 0 and θ = π. At θ = 0 boundary, the values of ghost cell at (r,−θ, φ) are defined by the

values at (r, θ, φ+ π). At θ = π boundary, the values of ghost cell at (r, θ+ π, φ) are defined

by the values at (r, π − θ, φ+ π).
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6.5. Prolongation and restriction for AMR

Since the geometry has changed, the prolongation and restriction for Cartesian AMR

grids may not work for the cylindrical or spherical grid. In this subsection, we describe

the prolongation and restriction operations for cell-centered variables. The operations for

face-centered variables will be described in the next subsection.

We assume that all of the variables resided at the cell center and are the cell-average

values over the whole cell. We should pointed out that our approach is different from that

in (Pember et al. 1996).

6.5.1. Restriction

We first describe the restriction operation. The restriction should make a volume

weighted average of a variable and assign it to the corresponding cell of the coarse mesh.

For Cartesian grid, it can be done by simple arithmetic averaging over all of the fine cells

because each fine cell has the same volume. For cylindrical and spherical grid, it may not

be true that each fine cell has the same volume. The volume of a cylindrical cell is
∫ z2

z1

dz

∫ r2

r1

dr

∫ θ2

θ1

rdθ =
1

2
(r22 − r21)∆θ∆z.

The volume of a spherical cell is
∫ r2

r1

dr

∫ θ2

θ1

rdθ

∫ φ2

φ1

r sin θdφ =
1

3
(r32 − r31)(cos θ1 − cos θ2)∆φ.

It is easy to see that the volume depends on r for a cylindrical grid, and depends on r and

θ for a spherical grid. The volume-weighted average value is no longer a simple arithmetic

average.

Consider a reduced 2-D (r, θ) problem (see Fig. 6.1). We can drop ∆z or ∆φ in the

volume formula. If the refinement ratio is 2 and the values on the fine grid is ufi,j
, the

volume-weighted average value for the cylindrical grid is then

uc =
(uf0,0

+ uf0,1
)dA0 + (uf1,0

+ uf1,1
)dA1

dAc

,

where dA0 = (r21 − r20), dA1 = (r22 − r21), and dAc = (r22 − r20).

The volume average value for the spherical grid is

uc =
uf0,0

dA0,0 + uf0,1
dA0,1 + uf1,0

dA1,0 + uf1,1
dA1,1

dAc

,
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where

dA0,0 = (r31 − r30)(cos θ0 − cos θ1),

dA0,1 = (r31 − r30)(cos θ1 − cos θ2),

dA1,0 = (r32 − r31)(cos θ0 − cos θ1),

dA1,1 = (r32 − r31)(cos θ1 − cos θ2),

dAc = (r32 − r30)(cos θ0 − cos θ2),

6.5.2. Prolongation

The prolongation is far more intricate than the restriction problem. The difficulty is

to find a conservative interpolation. We here study only the monotone-preserved linear

r

theta

U(0,0)

U(1,1)U(0,1)

U(1,0)

r

r

1

2

r
0

Fig. 6.1.— A reduced 2D (r, θ) coordinates
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interpolation. For a reduced 2-D (r, θ) problem. The interpolation on a coarse cell [r1, r2]×
[θ1, θ2] can be formulated as

u(r, θ) = uc +∆ruc(r − rc) + ∆θuc(θ − θc), (25)

where ∆r and ∆θ are limited slopes in corresponding r and θ direction, (rc, θc) is the location

of the cell center.

It is naive to think that the cell center locates at 1
2
(r1 + r2),

1
2
(θ1 + θ2) for cylindrical

and spherical grid. By definition, the cell center should satisfy the following condition

∫ r2

r1

dr

∫ θ2

θ1

u(r, θ)rdrdθ = uc · dAc, (26)

for the cylindrical grid, and

∫ r2

r1

∫ θ2

θ1

u(r, θ)r2 sin θdrdθ = uc · dAc, (27)

for the spherical grid.

For a cylindrical grid, we can obtain the location of the cell center by inserting Eq. (25)

into (26), which yields after simple manipulation,

rc =
2

3

(r32 − r31)

(r22 − r21)
, (28)

θc =
1

2
(θ2 + θ1). (29)

For a spherical grid, the location of the cell center can be obtained by inserting Eq. (25)

into (27),

rc =
3

4

(r42 − r41)

(r32 − r31)
(30)

θc =
θ1 cos θ1 − θ2 cos θ2 + sin θ2 − sin θ1

cos θ1 − cos θ2
. (31)

The locations of the cell-center for the fine grid can be calculated in the same way. Then

the cell-average values for the fine grid are calculated by (25). We have verified that the

cell-centered values obtained by (25) with rc and θc calculated by (28)–(31) for find grid cells

satisfy the conservation laws.
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6.6. Maintaining divergence free conditions for AMR

The maintenance divergence free conditions for AMR requires some modifications when

it is applied to the polar spherical grid.

We first study the restriction operation in AMR framework. It consists of making an

area weighted average of the magnetic field component that is collocated on the faces of the

fine mesh and assigning it to the corresponding face of the coarse mesh. Such step should

be carried out, along with the electric field correction step that is discussed later in this

section, whenever the fine and coarse meshes are temporally synchronized. It can be shown

easily that if the field on the fine mesh is divergence free, the combination of area-weighted

restriction and electric field correction will result in a divergence free field on the coarse

mesh.

For the 2-D (r, θ) polar spherical coordinates, it is actually a 3-D problem with symmetry

in φ direction, and hence the area of the face is quite different from that of Cartesian or

cylindrical coordinates. As we have mentioned in Section 6.2, the area for a cell (i, j − 1
2
)

located at (r, φ) face is r2i (cos θj − cos θj−1) (as usual, we drop dφ term), and the area for

a cell (i − 1
2
, j) located at (θ, φ) face is sin θj(

1
2
ri − 1

2
ri−1). The area-weighted restriction

applied to the magnetic field component then yield (assume the refinement ratio is 2)

Brc
=

Br1dAr1 +Br2dAr2

dAr1 + dAr2

(32)

Bθc
=

Bθ1dAθ1 +Bθ2dAθ2

dAθ1 + dAθ2

(33)

where Bri
and Bθi

are the values on the fine grid, and dAri
and dAθi

are the area at the

interfaces, which is defined by

dAri
= r2i (cos θj − cos θj−1),

dAθj
= sin θj(

1

2
ri −

1

2
ri−1).

Although the mesh is uniform on (r, θ) plane, dAri
(and dAθi

) is different for different i.

The electric field correction should be done at any fine-coarse interface. This ensure that

a coarse mesh that shares a face with the fine mesh will always have the best possible estimate

for the magnetic field when the fine and coarse meshes are temporally synchronized. For a

reduced 2-D (r, θ) polar spherical coordinates, the electric field has only one component (Ω3)

that locates at the node center. The correction should be made according to the equations

(23) and (24) with the newly updated electric field. In fact, what is required during the
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correction step is only the difference of the electric field between the coarse value and fine

value.

The prolongation operation from the coarse mesh to the fine mesh is far more intricate.

First a divergence-free preserving interpolation must be used to obtain the values on the fine

grid. A divergence free reconstruction scheme for Cartesian grid has been given by Balsara.

We here extend it to the polar spherical grid. We found that Balsara’s method cannot be

applied to the spherical geometry directly, because the divergence equation (19) contains

nonlinear functions sin θ. If we use a quadratic representation for Br and Bθ, as was done

by Balsara, we cannot get anything useful to maintain the divergence free conditions (22).

Another attempt is to rewrite (19) as

∇ ·B =
1

r2 sin θ

(

∂(r2Br sin θ)

∂r
+
∂(r sin θBθ)

∂θ

)

.

If we denote B̃r = r2Br sin θ and B̃θ = r sin θBθ, then from ∇ ·B = 0, we have

∂B̃r

∂r
+
∂B̃θ

∂θ
= 0, (34)

which is similar to the divergence free condition in Cartesian grid. The Balsara’s method for

Cartesian grid can be used to reconstruct new B̃r and B̃θ on the fine grid. This approach has

several drawbacks. First, the discretization of (34) in Cartesian grid will not be the same as

(22). There is a slight difference in calculating the area of the face at (i, j − 1
2
). The finite

difference of (34) in Cartesian grid corresponds to the discretization of (19) with area of of

the face at (i, j− 1
2
) to be sin θj− 1

2
(θj−θj−1). As we have mentioned, (22) is more accurate in

finite-volume sense. Second, because the scaling factors become zeros when when sin θ = 0,

we may not get the reconstructed Br and Bθ in those cases. Thirdly the Balsara’s approach

(linear profile at the face) can be used only for the refinement ratio of two. This is because

linear interpolation of the coarse face value to be matched by the fine values works only

when the refinement ratio is two. Although it can be extended to arbitrary refinement ratio,

it is much more complicated due to the high order interpolation polynomial. This drawback

exists also for Cartesian grid. In our implementation, we used a new approach which was

proposed in (Li & Li 2003) to reconstruct the divergence free field for the refined grid. The

new approach is done in dimensional splitting manner and can be applied to any kind of

grid with any refinement ratio.

To be used by nonuniform grid, we reconstruct the flux instead of the field itself. In

case of zero area of flux face, we reconstruct the field itself at the specific face. We assume
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that all of the zero-area faces reside on the coarse grid, which is trivial for spherical grid

because only the first θ = 0 face and the last θ = π face have zero area.

To be concise, we describe our algorithm in θ direction for the reduced 2-D spherical

grid. Suppose that the refinement ratio is n in θ direction and the coarse zone has faces at

θ0, θn, r0 and r1, we attempt to reconstruct the face values at θi (0 < r < n). Due to the

divergence free conditions, we only need reconstruct the field at the zone faces r0 and r1.

This can be done either by the linear interpolations of the coarse value or by copying the fine

field value directly if the face shares with a old fine mesh. Unlike the Balsara’s approach,

we can use any order of interpolation polynomial. For simplicity and the main method is

of second order, we use linear interpolation. For a TVD reconstruction, any limiters can be

used for the slope. To avoid flatting by the scaling factors, the limiters should be applied

directly to Br. After all of Br at the zone faces have been calculated, the Bθ can be calculated

sequentially by the divergence free condition.

For r direction, the same method can be used except that the new generated interfaces

in θ direction need to be refined too. For the TVD reconstruction, the limiter can either

be applied directly to the new interfaces or have the average value of those at the coarse

interfaces.

The reconstruction at the zone faces can be done easily with monotonic-preserving

reconstruction of Br or Bθ. Let B+
r = Bri,j

denotes the magnetic field at the cell’s upper

r face and B−r = Bri−1,j
denotes the magnetic field at the cell’s lower r face. Likewise, let

B+
θ = Bθi,j

denotes the magnetic field at the cell’s upper θ face and B−θ = Bθi,j−1
denotes

the magnetic field at the cell’s lower θ face. We can construct a piecewise linear profile via

a slope limiter for B±r and B±θ . Assume the limited slope for B±r is ∆θB
±
r , and the linear

profile is

B±r = B±rc
+∆θB

±
r (θ − θ0).

Then the following condition should be satisfied

1

r(cos θj−1 − cos θj)

∫ θj

θj−1

B±r · r sin θdθ = B±rc
,

which yields

θ0 =
θj−1 cos θj−1 − θj cos θj + sin θj − sin θj−1

cos θj−1 − cos θj
.

Similarly, for ∆θB
±
r and linear profile

B±θ = B±θc
+∆rB

±
θ (r − r0),
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and condition
∫ ri

ri−1

(r − r0)r sin θdr = 0,

we can obtain

r0 =
2(r3i − r3i−1)

3(r2i − r2i−1)
.

Note that θ0 and r0 are the face center for the corresponding face for the coarse grid. When

the mesh is refined with ratio m, face center for the fine mesh can be calculated in the same

fashion. Let δr = (ri − ri−1)/m and r = ri, then the face center for the fine grid will be

r0k =
2((r − kδr)3 − (r − (k + 1)δr)3)

3((r − kδr)2 − (r − (k + 1)δr)2)
, k = 0, 1, ...,m− 1.

After the face center is calculated, the magnetic field components can be calculated by the

linear profile

B±θ0k
= B±θc

+∆rB
±
θ (r0k − r0).

It can be verified that

B±θ0k
· dA0k = B±θ · dA,

which means the flux is conserved after interpolation. Similarly, we can obtain the face

center θ0k and obtain the Br for the fine face.

In case of dAr = 0 (e.g., θ = 0 or θ = π), we let dAr = ∆r, which is reduced to the

reconstruction on a uniform 1-D grid. We should mentioned that if the new fine grid shares

face with the old fine grid, the values of the magnetic field on the old fine grid should be

copied to the new grid.

6.7. From face-centered value to cell-centered value

The overall algorithm has been described in section 3.8. For the cylindrical and spherical

polar grid, we replace (x, y) with (r, θ) in equations in section 3.8.

6.7.1. Cylindrical grid

For Cylindrical grid, c0 =
1
2
(r1+ r2), cr =

1
2
(r1+ r), Ar(r) = r∆θ, Aθ(r) = (r− r1), and

V = 1
2
(r22 − r21)∆θ. The cell centered value of Br is

Br =
(B−r +B+

r )

2
+

(∆r)2

12

∆rB
+
θ −∆rB

−
θ

1
2
(r1 + r2)∆θ

.
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The cell centered value of Bθ is

Bθ =
(B−θ +B+

θ )

2
+

(1
2
(r1 + r2)∆θ)

2

12

∆θB
+
r −∆θB

−
r

∆r
.

Note that Br and Bθ are similar to those for Cartesian grid with ∆y = r∆θ.

6.7.2. Spherical grid

The case for spherical grid is much more complicated than the previous two. It reflects

a fully 3-D reconstruction. As we have derived,

c0 =
2

3

r32 − r31
r22 − r21

,

cr =
2

3

r3 − r31
r2 − r21

,

Ar(r) = r2(cos θ2 − cos θ1),

Aθ(r) =
1

2
(r2 − r21) sin θ,

and

V =
1

3
(r32 − r31)(cos θ1 − cos θ2).

From these equations, we can derive the cell-centered value of Br to be

Br =
1

r21 + r22 + r1r2

(

Br1r
2
1 +Br2r

2
2 +

r1r2
r1 + r2

(Br2r2 +Br1r1)

)

+
(∆r)2

12

∆rB
+
θ sin θ2 −∆rB

−
θ sin θ1

cos θ1 − cos θ2

r22 + r22 + 4r1r2
r32 + 2r22r1 + 2r2r21 + r31

The cell-centered value of Bθ can be derived similarly, which is

Bθ =
1

V
(Bθ2Aθ2

cos θ1∆θ + sin θ1 − sin θ2
cos θ1 − cos θ2

+Bθ1Aθ1

sin θ2 − sin θ1 − cos θ2∆θ

cos θ1 − cos θ2
) +

1

V
(∆θBr1r

2
1 −∆θBr2r

2
2)
(

θ̃ − (cos θ1∆θ + sin θ1 − sin θ2)θ0

)

,

where

Aθ1 =
1

2
(r22 − r21) sin θ1,

Aθ2 =
1

2
(r22 − r21) sin θ2,

θ̃ = (θ1 cos θ1 − sin θ1)∆θ + θ1 sin θ1 + 2 cos θ1 − θ2 sin θ2 − 2 cos θ2,
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θ0 =
θ1 cos θ1 − θ2 cos θ2 + sin θ2 − sin θ1

cos θ1 − cos θ2

It is easy to see that the second term in equation of Br is of O((∆r)2). Because

∫ θ2

θ1

(c(θ)− θ0)(cos θ1 − cos θ)dθ = θ̃ − (cos θ1∆θ + sin θ1 − sin θ2)θ0

where c(θ) = (θ1 cos θ1 − θ cos θ + sin θ − sin θ1)/(cos θ1 − cos θ), the second term of Bθ is

also of O(∆θ2). Therefore, if only second order accuracy is needed, the second term can be

neglected.

7. Numerical Experiments

In this section, we provided some examples to test our code. Without specification, the

unsplit version of our solvers with CFL number of 0.6 is used. The time step is determined

adaptively according to the current wave speed and CFL number. The computation is done

on our Linux PC with 1.7GHz AMD Athlon processor. Whenever the parallel computation

is needed, it is done on a four-processor cluster with 1.7GHz AMD Athlon processor.

7.1. Rotated shock-tube problem

This example has been used by (Tóth 2000) to compare several numerical schemes for

MHD. We adopt the same initial and boundary conditions as (Tóth 2000). The initial left

and right states are

(ρ, v‖, v⊥, p, B‖, B⊥) =

{

(1, 10, 0, 20, 5/
√
4π, 5/

√
4π), left,

(1,−10, 0, 1, 5/
√
4π, 5/

√
4π), right.

The vz and Bz components are zero. It was proposed as a 1-D problem. However we solved

it as a 2-D problem with an angle α = tan−1 2 between the shock interface and y-axes. Initial

domain and problem set-up is the same as in (Tóth 2000) except that the local spacing is

different. We used 400 cells in x-direction. The number of cells in y-direction is equal to

the number of ghost cells. In (Tóth 2000), dy = dx was used, which results in that the

shock interface is not in a straight line and the the parallel component of the magnetic

field is not conserved as it should be even if the flux-CT is used. We modified the local

spacing in y-direction so that the shock interface has a straight line. For α = tan−1 2,

we set dy = dx/2. After this modification, the parallel component of the magnetic field
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B‖ = 5/
√
4π is conserved exactly if the flux-CT is used. Fig. 7.1 shows the results of the

parallel component of the magnetic fields for Roe’s Riemann solver with different treatments

of the ∇ ·B.
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eight wave Riemann solver without source term
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Fig. 7.1.— The parallel component of the magnetic field is shown for Roe’s Riemann solver with different

treatments of the ∇ ·B. The flux constraint transport (flux-CT) method preserves B‖ exactly, The Powell’s

method with source term produces incorrect jump condition at the fast shock, which has been pointed out

in (Tóth 2000).

We also tested this problem with other Riemann solvers. To achieve the second order

accuracy, we used modified minmod limiter with parameter θ = 1.5 in our reconstruction and

two-stages second order Runge-Kutta method in time integration. For all of the Riemann

solver and integration schemes, the parallel component of the magnetic field is preserved

exactly when the flux-CT is used and has incorrect jump conditions for Powell’s source

term. We also compared other components of the solutions and the efficiency of different

methods with flux-CT. The results are shown in Figs 7.2-a to 7.2-d.

We also tested different schemes with MUSCL-Hancock approach to achieve the second

order accuracy. Compared with the two-stage Runge-Kutta method, MUSCL-Hancock is

much faster. Figs 7.3-a to 7.3-d show the results of the HLLC Riemann solver with MUSCL-

Hancock and two-stage Runge-Kutta approaches.

The Strang splitting version of the our solver was also tested. It seems that the CFL

number can be larger for the splitting version than for the unsplit version. We have used a
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Fig. 7.2-a.— Density plots.
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Fig. 7.2-b.— The plots for vertical component
B⊥ of the magnetic field.
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Fig. 7.2-c.— The plots for vertical component
v⊥ of the velocity field.
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Fig. 7.2-d.— Pressure plots.

Figure7.2: Results of different Riemann solvers with second order Runge-Kutta integration methods for the

shock tube problem. The HLL Riemann solver has too much diffusion on the contact discontinuity and

slow shock. The HLLC Riemann solver obtained almost the same results as Roe’s Riemann solver. For

CPU time, HLL took 7 seconds, HLLC took 8 seconds, and Roe’s Riemann solver took 13 seconds. The

oscillations in B⊥ might be due to the geometry set-up. For angle of 45◦ and 0◦, the oscillations disappear.

CFL number of 0.9 without any problem, whereas a CFL number of 0.7 for unsplit version

caused instability for this problem. We think the signal speed considered in CFL condition

for the unsplit version should be calculated as v =
√

(v2x + v2y) while for the split version,

only vx and/or vy are considered. From the plots in Fig. 7.4, we can see that the numerical

results are almost the same for both versions.

We also test this problem with the fifth-order WENO scheme combined with the third-

order Runge-Kutta TVD method. The magnetic fields are advanced with flux-CT schemes.
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Fig. 7.3-a.— Density plots.
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Fig. 7.3-b.— The plots for vertical component
B⊥ of the magnetic field.
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v⊥ of the velocity field.

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 p
re

ss
ur

e 

x

MUSCL-Hancock
2nd order Runge Kutta

Fig. 7.3-d.— Pressure plots.

Figure7.3: Results of HLLC Riemann solvers with MUSCL-Hancock approach, compared with the results

for second order Runge-Kutta integration method for the shock tube problem. MUSCL-Hancock approach

took only 5 seconds CPU time whereas the 2nd order Runge-Kutta approach took 8 seconds. The

MUSCL-Hancock approach also reduces the oscillation near the fast shocks.

The results are very close to ‘those obtained from Roe’s method combined with MUSCL-

Hancock approach. However, it took a very long computation time, 179 seconds. One of the

reasons is that it requires 3 ghost cells in each direction.

7.2. Two-dimensional propagation of Alfven wave

This example is taken from (Clarke 1996). It is illustrated in (Clarke 1996) that some

schemes that perform quite well for hydrodynamical tests may have difficulties with the
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Fig. 7.4.— The comparison of the results for split and unsplit versions of Roe’s method to rotated shock

tube problem.

propagation of Alfven waves. The set-up of the problem is as follows. A circular pulse of

velocity perpendicular to the plane of computation is initialized at the center of a 200×200
zone grid which contains a uniform magnetic field. Throughout the (1,2)-plane, the density,

pressure, and adiabatic index are set to 1, 3/5, and 5/3, respectively. The velocity is set to

zero everywhere, except for a circular region in the center of the grid with a radius if 10 zones

in which v3 is set to 10−3. In (Clarke 1996), the Alfven pulse has been either transported in

x-direction or in diagonal direction. We also tested the problem with a different propagation

direction by setting the magnetic field is Bx = 1, By = 2. This problem has exact solutions

for v3. The circular pulse in v3 should be carried along the magnetic field line at the Alfven

speed intact and undistorted.

Figs. 7.5-a to 7.5-d show the results of Roe’s Riemann solver combined with the

Hancock-MUSCL time integration.
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Fig. 7.5-b.— Contours of velocity perpendicular
to the grid (v3) at t = 0.3. Bx = 1, By = 0.
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Fig. 7.5-c.— Contours of velocity perpendicular
to the grid (v3) at t = 0.3. Bx = 1, By = 1.
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Fig. 7.5-d.— Contours of velocity perpendicular
to the grid (v3) at t = 0.15. Bx = 1, By = 2.

We also solved this example with other Riemann solvers. The solutions for the HLL

family solvers are very bad when CFL=0.6 was used. However the results for CFL=0.5 are

relatively good. Figs. 7.6-a and 7.6-b show the results of HLLC and HLL Riemann solver

for CFL=0.5. It is clear that HLL Riemann solver is more diffusive than HLLC Riemann

solver. The splitting version of our solvers works well for this problem with CFL=0.8.

7.3. Dai and Woodward’s cloud-shock interaction

This test problem is taken from (Dai & Woodward 1998) and was also used by (Tóth

2000) to compare different schemes. It models the disruption of a high density cloud by a
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Fig. 7.6-a.— Contours of velocity perpendicular
to the grid (v3) at t = 0.15. Bx = 1, By = 2.
HLLC Riemann solver is used.
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Fig. 7.6-b.— Contours of velocity perpendicular
to the grid (v3) at t = 0.15. Bx = 1, By = 2. HLL
Riemann solver is used.

strong shock wave.

We solved this example using our AMR schemes. AMR with two-level and three-level

refinement is tested with Roe’s solver and HLLC Riemann solver. The default refinement

ratio is 2 without specification. The second order accuracy is achieved via MUSCL-Hancock

approach. The divergence-free condition of the magnetic field is preserved very well (around

round of errors) by the flux-CT schemes. Roe’s solver took about 45 seconds for two-level

AMR and 159 seconds for three-level AMR. HLLC solver took about 32 seconds for two-level

AMR and 116 seconds for three level AMR. The results of contour plots of density and ∇·B
are shown in Figs. 7.7-a to 7.8-d.

The WENO scheme has difficulty in solving this problem. It fails with using the

CFL=0.6 and works only when CFL<0.3.

We also tested our AMR schemes with different refinement ratios. Figs. 7.9-a and 7.9-b

show the results of three-level refinement where the refinement ratio is 3 between the first

two levels and 2 between the last two levels.

It was found in (Tóth 2000) that the dimensional split one step TVD scheme can easily

fail due to non-physical states produced during the violent collision of the shock and the

cloud even when the minmod limiter and an entropy fix were used. However, we did not

experience such problems in our test with any of our Riemann solvers for CFL=0.9. We

calculated with our parallel AMR version. The results for Roe’s Riemann solver is shown

in Figs.7.10. The speed-up for the four-processor parallel compuatation is 2.2 with two-level
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Fig. 7.7-a.— Density contour plot for Roe’s
method with two-level refinement
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Fig. 7.7-b.— Density contour plot for HLLC
solver with two-level refinement.
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Fig. 7.7-c.— ∇ · B plot for Roe’s method with
two-level refinement.
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Fig. 7.7-d.— ∇ · B plot for HLLC solver with
two-level refinement.

refinement and is 3.5 without refinement. It was found that the parallel efficiency beccame

smaller with the increase of the refinement level.

This test example has symmetry along the line y = 0.5. Therefore, we can solve the

problem with a half domain [0,1]×[0,0.5], providing symmetric boundary conditions at y =

0.5. The result of HLLC with two refinement levels is shown in Fig. 7.10.

7.4. Balsara’s Rotor problem

This test problem is taken from (Balsara & Spicer 1999). It was also used by (Tóth

2000) to compare several numerical schemes. We used exactly the same set-up of the problem

as was described in (Tóth 2000).
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Fig. 7.8-a.— Density contour plot for Roe’s
method with three-level refinement.
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Fig. 7.8-b.— Density contour plot for HLLC
solver with three-level refinement.
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Fig. 7.8-c.— ∇ · B plot for Roe’s method with
three-level refinement.
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Fig. 7.8-d.— ∇ · B plot for HLLC solver with
three-level refinement.
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Fig. 7.9-a.— Density contour plot for HLLC
solver with three-level refinement. The refinement
ratio is 3 between the first two levels.
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Fig. 7.9-b.— ∇ · B plot for HLLC solver with
three-level refinement. The refinement ratio is 3
between the first two levels.
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Fig. 7.10.— The density contour plot for shock-cloud interaction problem for dimensional split Roe’s

method. The refinement ratio is 2. 4 processors were used. The base grid is 100×100.

We first solved the first rotor problem of (Tóth 2000) to time 0.15. It was reported

in (Tóth 2000) that many one step TVD base scheme failed to solve this problem due to

negative pressure. We did not encounter any difficulties with all of our solvers and time

integration schemes. We used two-level refinement with refinement ratio of 3. Figs. 7.11-a

to 7.11-f show the results for Roe’s, HLLC and HLL Riemann solver combined with MUSCL-

Hancock approach. HLL solver took 34 seconds, HLLC solver took 37 seconds, and Roe’s

solver took 52 seconds to reach the final time t = 0.15. It is clearly seen that the HLL solver

was too diffusive.

The dimensional unsplit TVD-MUSCL scheme was suggested to solve this problem by

(Tóth 2000). However, our dimensional split solvers solve this example without any difficulty.

We used a large CFL number 0.9 and two-level refinement with refinement ratio of 3. The
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Fig. 7.10.— The density contour plot for shock-cloud interaction problem when it is solved with half

domain and reflecting boundary at the top.

results for different Riemann solvers are shown in Fig.7.12. Again we tested the parallel

efficiency and found the efficiency was 90% without refinement and 70% with two-level

refinement.

The second rotor problem, described in (Tóth 2000), was also solved by our codes. We

used a three-level refinement with refinement ratio of 2 and base grid 100×100. The results

are in excellent agreement with those plotted in (Tóth 2000). We also solved the second

rotor problem (Tóth 2000) to the time t = 0.295. Figs. 7.13-a t0 7.13-b show the results of

HLLC solver with MUSCL-Hancock approach.

As a test to our code, we also solved the second motor problem with cylindrical coordi-

nates. It is important to correctly initialize the magnetic field in (r, θ) coordinates. It turns
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Fig. 7.11-a.— Density contour for Roe’s solver.
30 contours between 0.483 and 12.95 are used.
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Fig. 7.11-b.— ∇ ·B for Roe’s solver
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Fig. 7.11-c.— Density contour for HLLC solver.
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Fig. 7.11-d.— ∇ ·B for HLLC solver.
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Fig. 7.11-e.— Density contour for HLL solver.
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Fig. 7.11-f.— ∇ ·B for HLL solver.
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Fig. 7.12.— Results for rotor problems with dimensional split solvers . 30 contours between 0.483 and

12.95 are used.

out that the exact solution

Br = Bx cos(θ), (35)

Bθ = −Bx sin(θ),

is not divergence-free in our finite-volume discretization. Therefore, we adopted an approx-

imate initialization for Br, which is

Br = Bx

sin θj+1 − sin θj
dθ

.

This problem has two challenges for preserving the divergence-free condition on an AMR

grid. The first is the singular point at the origin. Br is not unique at origin. Although it
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Fig. 7.13-a.— Density contours for the second
rotor problem. 30 contour lines between 0.532 and
10.83 were used.
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Fig. 7.13-b.— Pressure contours for the sec-
ond rotor problem. 30 contours betwen 0.007 and
0.776 were used.

is not used in our finite-volume discretization of ∇ · B (canceled due to the zero area at

r = 0), it is needed in calculating the cell-centered values of Br, which is then used in the

Riemann solver. To calculate the dBr

dt
at the origin, we used the cell-centered values of dBr

dt

at (θ, 1
2
dr), which is calculated by our Riemann solver, and the values calculated at r1 = dr

in flux constraint-transport method.

The Riemann solver produces different electric-field values for different θ at origin. To

maintain the divergence-free condition, only one electric-field value at the origin should be

used to advance the Bθ for all of the θs. We set the electric-field at the origin to be the

average over the whole circle.

The next challenge is the periodic boundary condition in θ direction. Every patch that

shares an edge with θ = 0 or θ = 2π can become potentially an electric-field correction

partner for a coarse patch on the other end. It is important to make sure that the correction

does only once for each cell, and the Bθ and the electric-field have the same values (up to

the round-off error) at θ = 0 and θ = 2π. The density contour plots with refinement and

values of ∇ ·B over the whole domain are shown in Figs. 7.14-a and 7.14-b.

7.5. Rayleigh-Taylor instability

We also tested our code to solve the Rayleigh-Taylor instability problems. The com-

putational set-up is as follows. The initial domain is [0,0.25]×[0,1]. The initial densities of



– 54 –

−0.5 0 0.5

−0.5

0

0.5

x

y

Fig. 7.14-a.— Density contour plots with three-
level refinement for rotor problem. t = 0.295. 30
contour-lines from 0.45 to 13 are used.
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Fig. 7.14-b.— The ∇ · B at t = 0.295 for Fig.
7.14-a.

the heavy and light fluids are ρ1 = 1 and ρ2 = 2. Pressure equilibrium is assumed across

the interface at y = 0.5. We used reflecting boundary conditions in both x and y direc-

tions. The detail of the problem is described in (Remachle et al. 2003). In (Remachle et al.

2003), the perturbation is applied to the velocity field, In our implementation, we applied

the perturbation to the interface at y = 0.5. The initial interface is defined as

y = 0.01 cos(8πx).

It was pointed out in (Jun & Norman 1995) that the critical strength of a magnetic

field to suppress the instability of a mode of wavelength λ is

Bc =

√

gλ(ρ2 − ρ1)

cos θ
,

where g is the gravity acceleration, θ is the angle between B and the wave propagation

direction. For our specification of the problem, Bc =
√
0.25 = 0.5.

We tested this problem with two-level refinement with refinement ratio of 3. The local

spacing for base grid is ∆x = ∆y = 0.005. We first tested the impact of the tangential

magnetic field Bx on the growth of the instability. The final time is t = 2.0. We used By = 0

and different values of Bx: 0, 0.2Bc, 0.5Bc, and 0.8Bc. The results are shown in Fig. 7.15.

It is clearly seen that the instability is decreased dramatically with the increase of the Bx.

We also tested the impact of the normal magnetic field with choice of Bx = 0 and

By = Bc. Unlike the tangential magnetic field, the normal magnetic field has less impact
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Fig. 7.15.— The impact of the tangential magnetic field to the growth of the instability. 30 density contour

between 1 and 2 are used.

on the growth of the instability. Fig. 7.16 shows even applying a larger By than critical

field strength cannot suppress the growth of in normal direction. However, the growth in

tangential direction is suppressed owing to the strong tangential magnetic filed generated

during the integration.

7.6. Magnetized jet problem

This example is used to test our code on the cylindrical geometry with (r, z) coordinates.

It is introduced by (Ryu 2001). This is a simulation of a light cylindrical MHD jet with a

top-hat velocity profile. We tested this problem with computation domain [0,1]×[0,2]. The
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Fig. 7.16.— The impact of the normal magnetic field to the growth of the instability. 30 density contour

between 1 and 2 are used.

base grid is 200×200. The jet has a radius 0.125, which is about 25 base grid cells. The

ambient medium has sound speed of 1, and poloidal magnetic field (Bφ = Br = 0, Bz = 0.1).

The jet has Mach number of 20, gas density contrast ρjet/ρambient = 0.1. The jet carries a

helical magnetic field with Br = 0, Bφ = 2Bambient(r/rjet), and Bz = Bambient.

We used three refinement levels with refinement ratio 3 for the first two levels and 2 for

the last two levels. We ran our test until t = 0.1. Fig. 7.17-a shows the density contour plot

with the refinement. Fig. 7.17-b shows the results of ∇ ·B.
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Fig. 7.17-a.— The “zoomed” version of
refinement and density contour plot for the
jet problem on cylindrical (r, z) plane.
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Fig. 7.17-b.— The ∇ ·B for Fig. 7.17-a.

7.7. Hot bubble problem

We used this example to test our spherical HD and MHD solver. The problem is

set up as following. The computational domain is a spherical domain in (r, θ) with size

[0.2, 3.8] × [0, π/3]. The initial gas subjected to the external gravity is in equilibrium state

with density and pressure ρ = p = exp(−r). The spherical bubble located at center (1.1,0)

with radius 0.5. The density inside the bubble is defined as ρ = 0.1 exp(−r). We solved

it with two-level refinement. The initial base grid is 360×120. The refinement ratio is

3. HLLC Riemann solver is used. We first solved the problem with no magnetic field, i.e.,

Br = Bθ = Bφ = 0. Then we used a uniform magnetic field at large r in z = r cos θ direction.

It is a potential field with magnitude F = −b · r cos θ. The magnetic field is defined by

B = −∇F = (b cos θ,−b sin θ).

The constant b controls the magnitude the magnetic field. We tested the bubble problem

with b = 0.4.

The solutions without magnetic field are shown in Fig. 7.18. The Rayleigh-Taylor

instability at the contact interface is clearly seen from the plot. The solutions with magnetic

field are shown in Figs. 7.19 and 7.20. The Rayleigh-Taylor instability at the contact

interface is suppressed by a strong magnetic field in Fig. 7.19.

It is very important to maintain the divergence-free condition of the magnetic field for

this example. Otherwise, the pressure can easily become negative. The flux-CT approach

combined with our AMR divergence-preserving interpolation preserved the divergence-free
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Fig. 7.18.— The “hot bubble” problem solved without magnetic field. 50 density contour between 0 and

1 are used.

condition very well. The divergence of the magnetic field versus y = r cos θ is plotted in

Fig.7.21.

We also tested this problem with other Riemann solvers and time integration schemes.

The results for HLL solver is quite diffusive, while the results for Roe’s solver are very close

to what we have shown. The HLLC took about 1254 to reach the time t = 1.5, while the

Roe’s Riemann solver took about 1673 seconds. The same CFL number 0.6 is used for all

of the solvers. We did not test the dimensional split version of our code for this problem. If

that would be used, the different boundary conditions must be applied to each split step to

maintain the HSE. The method similar to that described in (Zingle et al. 2002) should be

used.
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Fig. 7.19.— The “hot bubble” problem solved with magnetic field b = 0.4. 50 density contour between 0

and 1 are used.
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